DSP Layered Architecture Design¶
Document Type: Knowledge Base - Architecture Design Pattern
Created: 2025-10-20
Last Updated: 2025-10-20
Confidence Level: High
Source: Framework architecture best practices and DSP implementation strategy
Purpose: Define the layered architecture for AirsDSP implementation
Overview¶
This document defines the layered architecture for AirsDSP, where the core DSP framework serves as the foundation with progressively higher-level building blocks constructed on top. This approach provides flexibility, maintainability, and accessibility for users at different expertise levels.
The Layered Architecture Vision¶
Architectural Principle¶
Core Concept: Build AirsDSP as a series of composable layers, where each layer provides increasing abstraction while building on the solid foundation of lower layers.
βββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β Layer 4: Application Systems β
β (Complete solutions for end users) β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β Layer 3: Task-Specific Pipelines β
β (Domain-optimized implementations) β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β Layer 2: Pattern Library β
β (Reusable composition patterns) β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β Layer 1: Core DSP Framework β
β (Fundamental primitives and operations) β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββ
Design Philosophy¶
- Separation of Concerns: Each layer has a distinct responsibility
- Progressive Abstraction: Higher layers provide convenience, lower layers provide control
- Composability: Components at any layer can be combined
- Flexibility: Users can choose their abstraction level
- Maintainability: Changes in lower layers benefit all layers above
Layer 1: Core DSP Framework¶
Purpose¶
Provide the fundamental building blocks for DSP implementation - the primitives that cannot be broken down further.
Components¶
Core Operations¶
// The three fundamental DSP operations
pub trait Demonstrate {
fn load_examples(&self, examples: &[Example]) -> Result<Demonstrations>;
fn bootstrap_pipeline_awareness(&self) -> Result<()>;
}
pub trait Search {
fn retrieve(&self, query: &Query, context: &Context) -> Result<RetrievalResults>;
fn configure_retrieval_model(&mut self, config: RMConfig) -> Result<()>;
}
pub trait Predict {
fn generate(&self, input: &PredictInput, context: &Context) -> Result<Prediction>;
fn configure_language_model(&mut self, config: LMConfig) -> Result<()>;
}
Pipeline Composition¶
pub struct Pipeline {
stages: Vec<Box<dyn Stage>>,
context: Context,
config: PipelineConfig,
}
impl Pipeline {
pub fn new() -> Self;
pub fn demonstrate(self, examples: Vec<Example>) -> Self;
pub fn predict(self, stage: impl Predict + 'static) -> Self;
pub fn search(self, stage: impl Search + 'static) -> Self;
pub fn execute(&self, input: &str) -> Result<String>;
}
Context Management¶
pub struct Context {
history: Vec<StageOutput>,
demonstrations: Demonstrations,
metadata: HashMap<String, Value>,
}
impl Context {
pub fn add_stage_output(&mut self, output: StageOutput);
pub fn get_stage_output(&self, stage_name: &str) -> Option<&StageOutput>;
pub fn get_all_context(&self) -> String;
}
Integration Interfaces¶
// Language Model Integration
pub trait LanguageModel {
fn generate(&self, prompt: &str, config: &GenerationConfig) -> Result<String>;
}
// Retrieval Model Integration
pub trait RetrievalModel {
fn search(&self, query: &str, config: &RetrievalConfig) -> Result<Vec<Document>>;
}
Characteristics¶
| Characteristic | Description |
|---|---|
| Abstraction Level | Minimal - close to the implementation |
| Flexibility | Maximum - full control over composition |
| Complexity | High - requires deep understanding |
| Use Cases | Novel research, custom patterns, maximum control |
| Target Users | Expert developers, researchers |
Example Usage¶
// Direct use of core primitives - maximum flexibility
use airsdsp_core::{Pipeline, PredictStage, SearchStage, DemonstrateStage};
let custom_pipeline = Pipeline::new()
.demonstrate(DemonstrateStage::new(custom_examples))
.predict(PredictStage::new("custom_analysis", analysis_config))
.search(SearchStage::new("custom_retrieval", retrieval_config))
.predict(PredictStage::new("custom_synthesis", synthesis_config))
.execute(input)?;
Core Module Structure¶
airsdsp-core/
βββ src/
β βββ lib.rs
β βββ pipeline/
β β βββ mod.rs
β β βββ builder.rs
β β βββ executor.rs
β β βββ stage.rs
β βββ operations/
β β βββ mod.rs
β β βββ demonstrate.rs
β β βββ search.rs
β β βββ predict.rs
β βββ context/
β β βββ mod.rs
β β βββ context.rs
β β βββ demonstrations.rs
β βββ integration/
β β βββ mod.rs
β β βββ language_model.rs
β β βββ retrieval_model.rs
β βββ types/
β βββ mod.rs
β βββ example.rs
β βββ query.rs
β βββ prediction.rs
βββ Cargo.toml
Layer 2: Pattern Library¶
Purpose¶
Provide reusable composition patterns that encode common and proven DSP pipeline structures.
Components¶
Chain-of-Thought Pattern¶
pub struct ChainOfThoughtPattern {
num_reasoning_steps: usize,
demonstrations: Vec<Example>,
stage_configs: HashMap<usize, StageConfig>,
}
impl ChainOfThoughtPattern {
pub fn new() -> Self;
pub fn with_steps(mut self, num: usize) -> Self;
pub fn with_demonstrations(mut self, examples: Vec<Example>) -> Self;
pub fn with_stage_config(mut self, step: usize, config: StageConfig) -> Self;
pub fn build(self) -> Result<Pipeline>;
}
Usage:
use airsdsp_patterns::ChainOfThoughtPattern;
let cot_pipeline = ChainOfThoughtPattern::new()
.with_steps(3)
.with_demonstrations(math_examples)
.with_stage_config(0, StageConfig {
name: "identify_problem",
prompt_template: Some("..."),
})
.build()?;
ReAct Pattern¶
pub struct ReActPattern {
max_iterations: usize,
demonstrations: Vec<Example>,
termination_condition: TerminationCondition,
}
impl ReActPattern {
pub fn new() -> Self;
pub fn with_max_iterations(mut self, max: usize) -> Self;
pub fn with_demonstrations(mut self, examples: Vec<Example>) -> Self;
pub fn with_termination(mut self, condition: TerminationCondition) -> Self;
pub fn build(self) -> Result<Pipeline>;
}
Usage:
use airsdsp_patterns::ReActPattern;
let react_pipeline = ReActPattern::new()
.with_max_iterations(3)
.with_demonstrations(search_examples)
.with_termination(TerminationCondition::HasAnswer)
.build()?;
Multi-Hop Reasoning Pattern¶
pub struct MultiHopPattern {
initial_search_config: SearchConfig,
entity_extraction_config: PredictConfig,
follow_up_search_config: SearchConfig,
max_hops: usize,
}
impl MultiHopPattern {
pub fn new() -> Self;
pub fn with_max_hops(mut self, max: usize) -> Self;
pub fn build(self) -> Result<Pipeline>;
}
Hierarchical Reasoning Pattern¶
pub struct HierarchicalPattern {
overview_first: bool,
depth_levels: usize,
breadth_per_level: usize,
}
Conversational Pattern¶
pub struct ConversationalPattern {
context_window: usize,
reference_resolution: bool,
history_summarization: bool,
}
Available Patterns¶
| Pattern | Purpose | Use Cases |
|---|---|---|
| ChainOfThought | Step-by-step reasoning | Math, logic, analysis |
| ReAct | Iterative thought-action-observation | Research, investigation |
| MultiHop | Multi-stage information gathering | Complex QA, fact verification |
| Hierarchical | General-to-specific reasoning | Research, exploration |
| Conversational | Context-aware dialogue | Chat, multi-turn QA |
| Hybrid | Combined patterns | Complex multi-dimensional tasks |
Characteristics¶
| Characteristic | Description |
|---|---|
| Abstraction Level | Medium - encodes common patterns |
| Flexibility | High - configurable and customizable |
| Complexity | Moderate - requires pattern understanding |
| Use Cases | Common reasoning patterns, best practices |
| Target Users | Intermediate to advanced developers |
Pattern Module Structure¶
airsdsp-patterns/
βββ src/
β βββ lib.rs
β βββ chain_of_thought/
β β βββ mod.rs
β β βββ pattern.rs
β β βββ examples.rs
β βββ react/
β β βββ mod.rs
β β βββ pattern.rs
β β βββ examples.rs
β βββ multi_hop/
β β βββ mod.rs
β β βββ pattern.rs
β β βββ examples.rs
β βββ hierarchical/
β β βββ mod.rs
β β βββ pattern.rs
β βββ conversational/
β β βββ mod.rs
β β βββ pattern.rs
β βββ hybrid/
β βββ mod.rs
β βββ combinators.rs
βββ Cargo.toml (depends on airsdsp-core)
Layer 3: Task-Specific Pipelines¶
Purpose¶
Provide ready-to-use, domain-optimized pipelines for specific task types with pre-configured demonstrations and optimizations.
Components¶
Math Solver¶
pub struct MathSolver {
pipeline: Pipeline,
problem_types: HashMap<String, ProblemTypeHandler>,
}
impl MathSolver {
pub fn new() -> Result<Self>;
pub fn solve(&self, problem: &str) -> Result<String>;
pub fn solve_with_steps(&self, problem: &str) -> Result<SolutionWithSteps>;
pub fn add_problem_type(&mut self, handler: ProblemTypeHandler);
}
Pre-configured for: - Arithmetic problems - Algebra problems - Geometry problems - Word problems - Calculus problems
Question Answering System¶
pub struct QuestionAnswering {
pipeline: Pipeline,
retrieval_config: RetrievalConfig,
}
impl QuestionAnswering {
pub fn new() -> Result<Self>;
pub fn answer(&self, question: &str) -> Result<Answer>;
pub fn answer_with_sources(&self, question: &str) -> Result<AnswerWithSources>;
pub fn configure_retrieval(&mut self, config: RetrievalConfig);
}
Pre-configured for: - Factual questions - Definitional questions - Explanatory questions - Comparison questions
Multi-Hop Question Answering¶
pub struct MultiHopQA {
pipeline: Pipeline,
max_hops: usize,
retrieval_strategy: RetrievalStrategy,
}
impl MultiHopQA {
pub fn new() -> Result<Self>;
pub fn answer(&self, question: &str) -> Result<Answer>;
pub fn answer_with_reasoning_trace(&self, question: &str) -> Result<AnswerWithTrace>;
}
Pre-configured for: - Multi-step reasoning questions - Questions requiring entity resolution - Questions requiring information synthesis
Code Analyzer¶
pub struct CodeAnalyzer {
pipeline: Pipeline,
supported_languages: Vec<Language>,
}
impl CodeAnalyzer {
pub fn new() -> Result<Self>;
pub fn analyze(&self, code: &str, language: Language) -> Result<Analysis>;
pub fn suggest_fixes(&self, code: &str, language: Language) -> Result<Vec<Fix>>;
pub fn explain_code(&self, code: &str, language: Language) -> Result<Explanation>;
}
Pre-configured for: - Syntax analysis - Bug detection - Code explanation - Fix suggestions
Legal Analyzer¶
pub struct LegalAnalyzer {
pipeline: Pipeline,
jurisdiction: Jurisdiction,
precedent_database: PrecedentDB,
}
impl LegalAnalyzer {
pub fn new(jurisdiction: Jurisdiction) -> Result<Self>;
pub fn analyze_contract(&self, contract: &str) -> Result<ContractAnalysis>;
pub fn find_precedents(&self, query: &str) -> Result<Vec<Precedent>>;
pub fn assess_risk(&self, situation: &str) -> Result<RiskAssessment>;
}
Research Assistant¶
pub struct ResearchAssistant {
pipeline: Pipeline,
citation_style: CitationStyle,
quality_filter: QualityFilter,
}
impl ResearchAssistant {
pub fn new() -> Result<Self>;
pub fn research_topic(&self, topic: &str) -> Result<ResearchReport>;
pub fn summarize_papers(&self, papers: Vec<Paper>) -> Result<Summary>;
pub fn synthesize_findings(&self, findings: Vec<Finding>) -> Result<Synthesis>;
}
Characteristics¶
| Characteristic | Description |
|---|---|
| Abstraction Level | High - domain-specific solutions |
| Flexibility | Medium - configurable within domain |
| Complexity | Low - simple API, complex internally |
| Use Cases | Specific task domains |
| Target Users | Application developers, domain experts |
Task Pipeline Module Structure¶
airsdsp-tasks/
βββ src/
β βββ lib.rs
β βββ math/
β β βββ mod.rs
β β βββ solver.rs
β β βββ problem_types.rs
β β βββ demonstrations/
β β βββ arithmetic.rs
β β βββ algebra.rs
β β βββ word_problems.rs
β βββ qa/
β β βββ mod.rs
β β βββ simple_qa.rs
β β βββ multi_hop_qa.rs
β β βββ demonstrations/
β β βββ factual_qa.rs
β βββ code/
β β βββ mod.rs
β β βββ analyzer.rs
β β βββ languages/
β β β βββ rust.rs
β β β βββ python.rs
β β β βββ javascript.rs
β β βββ demonstrations/
β β βββ code_analysis.rs
β βββ legal/
β β βββ mod.rs
β β βββ analyzer.rs
β β βββ demonstrations/
β β βββ legal_analysis.rs
β βββ research/
β βββ mod.rs
β βββ assistant.rs
β βββ demonstrations/
β βββ research_patterns.rs
βββ Cargo.toml (depends on airsdsp-patterns)
Layer 4: Application Systems¶
Purpose¶
Provide complete, production-ready systems that compose multiple task pipelines with routing, orchestration, and user-facing features.
Components¶
Multi-Task Assistant¶
pub struct MultiTaskAssistant {
task_classifier: Pipeline,
router: TaskRouter,
pipelines: HashMap<TaskType, Box<dyn TaskPipeline>>,
default_pipeline: Pipeline,
config: AssistantConfig,
}
impl MultiTaskAssistant {
pub fn new() -> Result<Self>;
pub fn process(&self, input: &str) -> Result<Response>;
pub fn process_with_context(&self, input: &str, context: UserContext) -> Result<Response>;
pub fn add_pipeline(&mut self, task_type: TaskType, pipeline: Box<dyn TaskPipeline>);
pub fn configure(&mut self, config: AssistantConfig);
}
Features: - Automatic task classification - Intelligent routing to specialized pipelines - Context management across interactions - Fallback handling - Usage tracking and analytics
Domain Expert Systems¶
pub struct DomainExpertSystem {
domain: Domain,
specialized_pipelines: Vec<Pipeline>,
knowledge_base: KnowledgeBase,
reasoning_engine: ReasoningEngine,
}
impl DomainExpertSystem {
pub fn new(domain: Domain) -> Result<Self>;
pub fn consult(&self, query: &str) -> Result<ExpertResponse>;
pub fn explain_reasoning(&self, query: &str) -> Result<ReasoningTrace>;
pub fn update_knowledge(&mut self, knowledge: Knowledge);
}
Pre-built Domains: - Medical diagnosis support - Legal consultation - Financial analysis - Technical troubleshooting - Educational tutoring
Conversational Agent¶
pub struct ConversationalAgent {
conversation_history: ConversationHistory,
personality: PersonalityConfig,
task_pipelines: HashMap<TaskType, Pipeline>,
context_manager: ContextManager,
}
impl ConversationalAgent {
pub fn new() -> Result<Self>;
pub fn chat(&mut self, message: &str) -> Result<ChatResponse>;
pub fn reset_conversation(&mut self);
pub fn set_personality(&mut self, personality: PersonalityConfig);
pub fn get_conversation_summary(&self) -> Result<Summary>;
}
Features: - Multi-turn conversation handling - Context accumulation - Reference resolution - Personality configuration - Task switching within conversation
Research Platform¶
pub struct ResearchPlatform {
research_assistant: ResearchAssistant,
qa_system: QuestionAnswering,
summarizer: DocumentSummarizer,
citation_manager: CitationManager,
}
impl ResearchPlatform {
pub fn new() -> Result<Self>;
pub fn research_topic(&self, topic: &str) -> Result<ResearchReport>;
pub fn answer_research_question(&self, question: &str) -> Result<Answer>;
pub fn summarize_literature(&self, query: &str) -> Result<LiteratureReview>;
pub fn manage_citations(&mut self, papers: Vec<Paper>) -> Result<Bibliography>;
}
Characteristics¶
| Characteristic | Description |
|---|---|
| Abstraction Level | Highest - complete solutions |
| Flexibility | Lower - opinionated design |
| Complexity | Minimal - plug-and-play |
| Use Cases | End-user applications |
| Target Users | Application users, minimal configuration |
System Module Structure¶
airsdsp-systems/
βββ src/
β βββ lib.rs
β βββ multi_task/
β β βββ mod.rs
β β βββ assistant.rs
β β βββ router.rs
β β βββ classifier.rs
β βββ domain_expert/
β β βββ mod.rs
β β βββ system.rs
β β βββ domains/
β β βββ medical.rs
β β βββ legal.rs
β β βββ financial.rs
β βββ conversational/
β β βββ mod.rs
β β βββ agent.rs
β β βββ context_manager.rs
β β βββ personality.rs
β βββ research/
β βββ mod.rs
β βββ platform.rs
β βββ components/
β βββ summarizer.rs
β βββ citation_manager.rs
βββ Cargo.toml (depends on airsdsp-tasks)
Cross-Layer Comparison¶
Feature Comparison Matrix¶
| Feature | Layer 1: Core | Layer 2: Patterns | Layer 3: Tasks | Layer 4: Systems |
|---|---|---|---|---|
| Abstraction | Minimal | Medium | High | Highest |
| Flexibility | Maximum | High | Medium | Lower |
| Ease of Use | Expert | Moderate | Easy | Very Easy |
| Customization | Full | Configurable | Limited | Minimal |
| Learning Curve | Steep | Moderate | Gentle | Minimal |
| Development Time | Longest | Moderate | Quick | Quickest |
| Target Users | Researchers | Developers | App Builders | End Users |
| Documentation Needs | Deep technical | Pattern guides | API docs | User guides |
Usage Comparison¶
Layer 1 Example: Core Primitives¶
use airsdsp_core::{Pipeline, PredictStage, SearchStage};
// Expert level - full control, high complexity
let pipeline = Pipeline::new()
.demonstrate(custom_examples)
.predict(PredictStage::new("stage1", config1))
.search(SearchStage::new("search1", search_config))
.predict(PredictStage::new("stage2", config2));
Layer 2 Example: Patterns¶
use airsdsp_patterns::ChainOfThoughtPattern;
// Intermediate level - pattern-based, configurable
let pipeline = ChainOfThoughtPattern::new()
.with_steps(3)
.with_demonstrations(examples)
.build()?;
Layer 3 Example: Task Pipelines¶
use airsdsp_tasks::MathSolver;
// Application level - task-specific, simple API
let solver = MathSolver::new()?;
let answer = solver.solve("What is 15% of 240?")?;
Layer 4 Example: Complete Systems¶
use airsdsp_systems::MultiTaskAssistant;
// End-user level - just works, minimal setup
let assistant = MultiTaskAssistant::new()?;
let response = assistant.process("What is 15% of 240?")?;
Benefits of Layered Architecture¶
For Framework Development¶
1. Clear Development Path¶
- β Build foundation first (Layer 1)
- β Add patterns incrementally (Layer 2)
- β Develop task pipelines (Layer 3)
- β Compose systems (Layer 4)
2. Incremental Delivery¶
- β Can ship Layer 1 as "core" release
- β Add patterns as separate releases
- β Task pipelines can be community contributions
- β Systems can be specialized packages
3. Independent Testing¶
- β Unit test core primitives
- β Integration test patterns
- β End-to-end test task pipelines
- β System test complete applications
4. Performance Optimization¶
- β Optimize core execution
- β Optimize pattern compositions
- β Optimize task-specific demonstrations
- β Optimize system-level routing
For Library Users¶
1. Multiple Entry Points¶
- β Experts can use core directly
- β Developers can use patterns
- β App builders can use task pipelines
- β End users can use complete systems
2. Progressive Learning¶
- β Start with high-level systems
- β Learn patterns as needed
- β Drop down to core for advanced needs
- β Gradual complexity curve
3. Customization Options¶
- β Configure systems without rebuilding
- β Customize task pipelines with patterns
- β Create novel patterns from core
- β Mix layers as needed
4. Ecosystem Growth¶
- β Community can contribute patterns
- β Domain experts can build task pipelines
- β Application developers can share systems
- β Everyone benefits from core improvements
For Maintenance¶
1. Isolation of Changes¶
- β Core changes rarely break patterns
- β Pattern changes don't affect core
- β Task pipeline updates independent
- β System updates don't affect lower layers
2. Clear Responsibility¶
- β Core team maintains Layer 1
- β Pattern library team maintains Layer 2
- β Domain teams maintain Layer 3
- β Application teams maintain Layer 4
3. Versioning Strategy¶
- β Core has stable API with semantic versioning
- β Patterns can evolve independently
- β Task pipelines can have faster iteration
- β Systems can track dependencies clearly
Implementation Strategy¶
Phase 1: Core Foundation (Months 1-3)¶
Goal: Solid, well-tested core primitives
Deliverables: - Core DSP operations (Demonstrate, Search, Predict) - Pipeline composition and execution - Context management - LM/RM integration interfaces - Comprehensive core documentation - Core test suite
Success Criteria: - All core operations functional - Zero compiler warnings - 90%+ test coverage - Performance benchmarks established
Phase 2: Pattern Library (Months 4-6)¶
Goal: Encode proven composition patterns
Deliverables: - Chain-of-Thought pattern - ReAct pattern - Multi-Hop pattern - Hierarchical pattern - Conversational pattern - Pattern documentation and examples - Pattern test suite
Success Criteria: - All patterns buildable from core - Pattern performance validates DSP benchmarks - Clear pattern selection guidelines - Examples for each pattern
Phase 3: Task Pipelines (Months 7-9)¶
Goal: Ready-to-use domain solutions
Deliverables: - MathSolver pipeline - QuestionAnswering pipeline - MultiHopQA pipeline - CodeAnalyzer pipeline (basic) - Task-specific demonstrations - API documentation - Task pipeline test suite
Success Criteria: - Each pipeline performs well on domain tasks - Simple, intuitive APIs - Comprehensive demonstrations - Performance metrics documented
Phase 4: Application Systems (Months 10-12)¶
Goal: Complete production-ready systems
Deliverables: - MultiTaskAssistant system - Domain expert system (one domain) - ConversationalAgent system - System documentation - Deployment guides - System test suite
Success Criteria: - Systems handle real-world usage - Graceful error handling - Production-ready quality - User documentation complete
Crate Organization¶
Workspace Structure¶
airsdsp/
βββ Cargo.toml (workspace)
βββ crates/
β βββ airsdsp-core/
β β βββ Cargo.toml
β β βββ src/
β βββ airsdsp-patterns/
β β βββ Cargo.toml (depends on core)
β β βββ src/
β βββ airsdsp-tasks/
β β βββ Cargo.toml (depends on patterns)
β β βββ src/
β βββ airsdsp-systems/
β βββ Cargo.toml (depends on tasks)
β βββ src/
βββ examples/
β βββ core_usage/
β βββ pattern_usage/
β βββ task_usage/
β βββ system_usage/
βββ docs/
βββ core/
βββ patterns/
βββ tasks/
βββ systems/
Dependency Graph¶
airsdsp-systems
β depends on
airsdsp-tasks
β depends on
airsdsp-patterns
β depends on
airsdsp-core
β depends on
[External dependencies: LM/RM clients, etc.]
Version Compatibility¶
# airsdsp-core
[package]
name = "airsdsp-core"
version = "0.1.0"
# airsdsp-patterns
[package]
name = "airsdsp-patterns"
version = "0.1.0"
[dependencies]
airsdsp-core = "0.1" # Major version compatibility
# airsdsp-tasks
[package]
name = "airsdsp-tasks"
version = "0.1.0"
[dependencies]
airsdsp-patterns = "0.1" # Major version compatibility
# airsdsp-systems
[package]
name = "airsdsp-systems"
version = "0.1.0"
[dependencies]
airsdsp-tasks = "0.1" # Major version compatibility
Real-World Analogies¶
Programming Language Analogy¶
Layer 1 (Core) β Assembly/Machine Code
Layer 2 (Patterns) β Standard Library (std)
Layer 3 (Tasks) β Frameworks (web, async, etc.)
Layer 4 (Systems) β Applications built with frameworks
Building Construction Analogy¶
Layer 1 (Core) β Raw materials (bricks, cement, wood)
Layer 2 (Patterns) β Building components (walls, floors, roofs)
Layer 3 (Tasks) β Rooms (kitchen, bedroom, bathroom)
Layer 4 (Systems) β Complete buildings (house, office, mall)
Cooking Analogy¶
Layer 1 (Core) β Basic techniques (chop, sautΓ©, boil)
Layer 2 (Patterns) β Fundamental recipes (sauces, stocks, dough)
Layer 3 (Tasks) β Specific dishes (pizza, pasta, soup)
Layer 4 (Systems) β Complete meals/menus
Precedents in Successful Frameworks¶
PyTorch¶
torch (core)
β torch.nn (patterns/modules)
β torchvision (domain models)
β PyTorch Lightning (systems)
React Ecosystem¶
React Core (primitives)
β React Hooks (patterns)
β Component Libraries (reusable components)
β Complete Applications
Rust Async Ecosystem¶
std::future (core)
β futures crate (patterns/utilities)
β tokio/async-std (runtimes)
β axum/actix-web (frameworks)
Documentation Strategy¶
Layer-Specific Documentation¶
Layer 1: Core Documentation¶
- Audience: Expert developers, researchers
- Content: Technical specifications, API reference, architecture deep-dives
- Format: rustdoc, architecture documents, technical guides
Layer 2: Pattern Documentation¶
- Audience: Intermediate developers
- Content: Pattern descriptions, when to use, configuration options, examples
- Format: Pattern guides, tutorials, comparison tables
Layer 3: Task Documentation¶
- Audience: Application developers
- Content: API reference, usage examples, domain-specific guidance
- Format: API docs, how-to guides, cookbook recipes
Layer 4: System Documentation¶
- Audience: End users, integrators
- Content: User guides, setup instructions, deployment guides
- Format: User manuals, quick-start guides, FAQs
Documentation Types (DiΓ‘taxis Framework)¶
Following DiΓ‘taxis for each layer:
| Layer | Tutorials | How-To Guides | Reference | Explanation |
|---|---|---|---|---|
| Core | Basic pipeline | Custom stages | API docs | Architecture |
| Patterns | Using patterns | Pattern selection | Pattern API | Pattern theory |
| Tasks | Task tutorials | Task customization | Task API | Domain concepts |
| Systems | Quick-start | System config | System API | System design |
Key Architectural Principles¶
1. Explicit Over Implicit¶
- β Layer boundaries are clear
- β Dependencies are explicit
- β Abstractions are visible
2. Composition Over Inheritance¶
- β Layers compose, not inherit
- β Components are composable
- β Mix layers as needed
3. Simplicity at Each Layer¶
- β Core is simple primitives
- β Patterns are simple compositions
- β Tasks are simple APIs
- β Systems are simple to use
4. Performance at Every Layer¶
- β Core is optimized for speed
- β Patterns minimize overhead
- β Tasks optimize for domain
- β Systems optimize for throughput
5. Rust Idioms Throughout¶
- β Zero-cost abstractions
- β Explicit error handling
- β Type safety
- β Ownership and borrowing
Key Takeaways¶
For Architecture¶
- β Layered architecture provides flexibility - users choose abstraction level
- β Each layer has clear responsibility - separation of concerns
- β Layers build on each other - progressive abstraction
- β Composability at every level - mix and match components
- β Proven pattern in successful frameworks - PyTorch, React, Rust ecosystem
For Implementation¶
- β Build foundation first - core must be solid
- β Add layers incrementally - each layer adds value
- β Test independently - each layer has own tests
- β Document appropriately - different docs for different audiences
- β Version carefully - maintain compatibility
For Users¶
- β Start at appropriate layer - match expertise level
- β Can always go deeper - drop down layers as needed
- β Progressive learning - gradually understand lower layers
- β Customize at any level - flexibility throughout
- β Ecosystem benefits - improvements at any layer help all
References¶
Related Knowledge Base Documents¶
- DSP Framework Core:
dsp_framework_core.md - DSP Pipeline Architecture Examples:
dsp_pipeline_architecture_examples.md - DSP Reasoning Strategies:
dsp_reasoning_strategies_implementation.md - DSP Multi-Task System:
dsp_multi_task_system_architecture.md - DSP/DSPy Comparative Evolution:
dsp_dspy_comparative_evolution.md
Framework Architecture References¶
- PyTorch architecture and layer separation
- React ecosystem and component composition
- Rust async ecosystem layering (futures β tokio β axum)
Design Principles¶
- Separation of Concerns
- Progressive Disclosure
- Composition over Inheritance
- Explicit over Implicit
Document Status: Complete
Implementation Readiness: High - Provides clear architectural roadmap
Next Steps: Use this architecture to structure AirsDSP development roadmap and crate organization