Skip to content

DSP Multi-Task System Architecture

Document Type: Knowledge Base - System Architecture Pattern
Created: 2025-10-20
Last Updated: 2025-10-20
Confidence Level: High
Source: DSP framework analysis and practical implementation reasoning
Purpose: Document the multi-task system architecture with task classification and pipeline routing

Overview

This document describes a critical architectural pattern for production DSP systems: multi-task architecture with task classification and pipeline routing. This pattern enables a single system to handle diverse user inputs by classifying tasks and routing to specialized pipelines, with graceful fallback to a default pipeline.

The Core Insight: Task-Level vs. Query-Level

A Critical Distinction

Pipelines are built for TASK TYPES, not specific user inputs.

This distinction is fundamental to understanding DSP architecture:

Level What It Represents Examples Built When
Task Level Category of problems Math, QA, Code Analysis Design time (once)
Query Level Specific user input "What is 15% of 240?" Runtime (many times)

The Mental Model

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  Task Type: "Math Word Problems"        β”‚  ← Built ONCE
β”‚  Pipeline: Decompose β†’ Solve β†’ Answer   β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
              ↓ Executes on ↓
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Query 1: "What is 15% of 240?"          β”‚  ← Many different
β”‚ Query 2: "sqrt(sum(primes < 10))?"      β”‚  ← user inputs,
β”‚ Query 3: "If John has 5 apples..."      β”‚  ← same task type
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Why This Matters

Pipeline stages are GENERIC within a task type: - They can handle variation in inputs - They use demonstrations to adapt behavior - They work on any input of that task type - They don't need to be rebuilt for each query

The Multi-Task System Pattern

Architecture Overview

                    User Input
                        ↓
        β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
        β”‚   Task Classification         β”‚
        β”‚   (DSP Pipeline)              β”‚
        β”‚   Determines: What task type? β”‚
        β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                        ↓
        β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
        β”‚   Router / Dispatcher         β”‚
        β”‚   Selects: Which pipeline?    β”‚
        β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                        ↓
        β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
        ↓               ↓               ↓
    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β”‚  Math   β”‚   β”‚   QA    β”‚   β”‚  Code    β”‚ ... Specialized
    β”‚Pipeline β”‚   β”‚Pipeline β”‚   β”‚ Pipeline β”‚     Pipelines
    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
        ↓               ↓               ↓
        β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                        ↓
            If no specialized pipeline
                        ↓
        β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
        β”‚   Default/Fallback Pipeline   β”‚
        β”‚   Handles: Everything else    β”‚
        β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                        ↓
                    Response

Components

1. Task Classifier (DSP Pipeline)

Purpose: Determine what type of task the user input represents

Implementation: A DSP pipeline itself!

fn build_task_classifier() -> Result<Pipeline> {
    Pipeline::new()
        .demonstrate(vec![
            Example {
                input: "What is 15% of 240?",
                output: "task_type: math, confidence: 0.95",
            },
            Example {
                input: "Who wrote Romeo and Juliet?",
                output: "task_type: question_answering, confidence: 0.90",
            },
            Example {
                input: "What year did the director of Inception win his first Oscar?",
                output: "task_type: multi_hop_reasoning, confidence: 0.92",
            },
            Example {
                input: "Debug this Python code: def add(a b): return a + b",
                output: "task_type: code_analysis, confidence: 0.88",
            },
            // More examples covering various task types
        ])
        .predict(ClassifyTaskType::new())
        .build()
}

Output: Task type + confidence score

2. Router / Dispatcher

Purpose: Select the appropriate pipeline based on classification

Logic:

fn select_pipeline(&self, classification: &TaskClassification) -> &Pipeline {
    // Check confidence threshold
    if classification.confidence < self.config.min_confidence {
        return &self.default_pipeline;
    }

    // Try to get specialized pipeline
    match self.get_specialized_pipeline(&classification.task_type) {
        Some(pipeline) => pipeline,
        None => &self.default_pipeline, // Fallback
    }
}

3. Specialized Pipelines

Purpose: Optimized pipelines for specific task types

Examples: - Math Pipeline: Problem decomposition β†’ Calculation β†’ Answer - QA Pipeline: Query formulation β†’ Search β†’ Extract answer - Multi-hop Pipeline: Initial search β†’ Entity extraction β†’ Follow-up search β†’ Synthesis - Code Pipeline: Code analysis β†’ Search docs β†’ Suggest fix

4. Default/Fallback Pipeline

Purpose: Handle any input that doesn't match a specialized pipeline

Characteristics: - General-purpose approach - Uses retrieval when possible - Attempts to provide reasonable response - Always available (never returns error due to unknown task)

Complete Implementation Example

System Structure

pub struct AirsDSPSystem {
    // Core classification pipeline (REQUIRED)
    task_classifier: Pipeline,

    // Specialized task pipelines (OPTIONAL - can be None)
    math_pipeline: Option<Pipeline>,
    qa_pipeline: Option<Pipeline>,
    multi_hop_qa_pipeline: Option<Pipeline>,
    code_analysis_pipeline: Option<Pipeline>,
    conversational_pipeline: Option<Pipeline>,
    legal_analysis_pipeline: Option<Pipeline>,

    // Fallback pipeline (REQUIRED)
    default_pipeline: Pipeline,

    // Configuration
    config: SystemConfig,
}

pub struct SystemConfig {
    // Whether to use specialized pipelines when available
    enable_specialized_pipelines: bool,

    // Minimum confidence to use specialized pipeline
    min_confidence_threshold: f32,

    // Whether to log routing decisions
    log_routing: bool,

    // Whether to track usage patterns
    track_usage: bool,
}

pub struct TaskClassification {
    pub task_type: String,
    pub confidence: f32,
    pub reasoning: Option<String>,
}

pub struct Response {
    pub answer: String,
    pub task_type: String,
    pub pipeline_used: String,
    pub confidence: f32,
    pub metadata: ResponseMetadata,
}

System Implementation

impl AirsDSPSystem {
    pub fn new() -> Result<Self> {
        Ok(Self {
            // Task classifier - ALWAYS REQUIRED
            task_classifier: Self::build_task_classifier()?,

            // Specialized pipelines - OPTIONAL
            // Start with None, add as needed
            math_pipeline: Some(Self::build_math_pipeline()?),
            qa_pipeline: Some(Self::build_qa_pipeline()?),
            multi_hop_qa_pipeline: Some(Self::build_multi_hop_pipeline()?),
            code_analysis_pipeline: None, // Not implemented yet
            conversational_pipeline: None, // Not implemented yet
            legal_analysis_pipeline: None, // Not implemented yet

            // Default pipeline - ALWAYS REQUIRED
            default_pipeline: Self::build_default_pipeline()?,

            // Configuration
            config: SystemConfig {
                enable_specialized_pipelines: true,
                min_confidence_threshold: 0.75,
                log_routing: true,
                track_usage: true,
            },
        })
    }

    /// Main entry point: process user input
    pub fn process(&self, user_input: &str) -> Result<Response> {
        // Step 1: Classify the task type
        let classification = self.classify_task(user_input)?;

        if self.config.log_routing {
            log::info!(
                "Classified as '{}' with confidence {:.2}",
                classification.task_type,
                classification.confidence
            );
        }

        // Step 2: Select appropriate pipeline
        let selected_pipeline = self.select_pipeline(&classification)?;

        if self.config.log_routing {
            log::info!("Routing to pipeline: {}", selected_pipeline.name());
        }

        // Step 3: Execute the selected pipeline
        let answer = selected_pipeline.execute(user_input)?;

        // Step 4: Build response
        Ok(Response {
            answer,
            task_type: classification.task_type,
            pipeline_used: selected_pipeline.name().to_string(),
            confidence: classification.confidence,
            metadata: ResponseMetadata::new(),
        })
    }

    /// Classify the input to determine task type
    fn classify_task(&self, input: &str) -> Result<TaskClassification> {
        let result = self.task_classifier.execute(input)?;

        // Parse classification output
        // Expected format: "task_type: math, confidence: 0.95, reasoning: ..."
        let task_type = extract_field(&result, "task_type")?;
        let confidence = extract_field(&result, "confidence")?
            .parse::<f32>()?;
        let reasoning = extract_field(&result, "reasoning").ok();

        Ok(TaskClassification {
            task_type,
            confidence,
            reasoning,
        })
    }

    /// Select the appropriate pipeline based on classification
    fn select_pipeline(&self, classification: &TaskClassification) -> Result<&Pipeline> {
        // If specialized pipelines are disabled, use default
        if !self.config.enable_specialized_pipelines {
            return Ok(&self.default_pipeline);
        }

        // If confidence is too low, use default
        if classification.confidence < self.config.min_confidence_threshold {
            if self.config.log_routing {
                log::warn!(
                    "Confidence {:.2} below threshold {:.2}, using default pipeline",
                    classification.confidence,
                    self.config.min_confidence_threshold
                );
            }
            return Ok(&self.default_pipeline);
        }

        // Try to get specialized pipeline
        let specialized = match classification.task_type.as_str() {
            "math" | "calculation" | "arithmetic" => {
                self.math_pipeline.as_ref()
            }
            "question_answering" | "factual_query" => {
                self.qa_pipeline.as_ref()
            }
            "multi_hop_reasoning" | "complex_question" => {
                self.multi_hop_qa_pipeline.as_ref()
            }
            "code_analysis" | "programming" | "debugging" => {
                self.code_analysis_pipeline.as_ref()
            }
            "conversation" | "chat" => {
                self.conversational_pipeline.as_ref()
            }
            "legal_analysis" | "contract_review" => {
                self.legal_analysis_pipeline.as_ref()
            }
            _ => None,
        };

        // Return specialized pipeline or fall back to default
        Ok(specialized.unwrap_or(&self.default_pipeline))
    }

    // Pipeline builders

    fn build_task_classifier() -> Result<Pipeline> {
        Pipeline::new()
            .demonstrate(load_task_classification_examples()?)
            .predict(ClassifyTaskType::new())
            .build()
    }

    fn build_math_pipeline() -> Result<Pipeline> {
        Pipeline::new()
            .demonstrate(load_math_examples()?)
            .predict(IdentifyProblemType::new())
            .predict(DecomposeProblem::new())
            .predict(SolveStepByStep::new())
            .predict(SynthesizeAnswer::new())
            .build()
    }

    fn build_qa_pipeline() -> Result<Pipeline> {
        Pipeline::new()
            .demonstrate(load_qa_examples()?)
            .search(FormulateQuery::new())
            .predict(ExtractAnswer::new())
            .build()
    }

    fn build_multi_hop_pipeline() -> Result<Pipeline> {
        Pipeline::new()
            .demonstrate(load_multi_hop_examples()?)
            .search(InitialQuery::new())
            .predict(ExtractEntities::new())
            .search(FollowUpQuery::new())
            .predict(SynthesizeAnswer::new())
            .build()
    }

    fn build_default_pipeline() -> Result<Pipeline> {
        // General-purpose pipeline
        Pipeline::new()
            .demonstrate(load_general_examples()?)
            .search(GeneralQuery::new())
            .predict(GeneralResponse::new())
            .build()
    }
}

Usage Examples

fn main() -> Result<()> {
    let system = AirsDSPSystem::new()?;

    // Example 1: Math problem
    // Classified as "math" β†’ Routes to math_pipeline
    let response1 = system.process("What is 15% of 240?")?;
    println!("Answer: {}", response1.answer);
    println!("Pipeline used: {}", response1.pipeline_used);
    // Output: "36", "math_pipeline"

    // Example 2: Simple question
    // Classified as "question_answering" β†’ Routes to qa_pipeline
    let response2 = system.process("Who wrote Hamlet?")?;
    println!("Answer: {}", response2.answer);
    println!("Pipeline used: {}", response2.pipeline_used);
    // Output: "William Shakespeare", "qa_pipeline"

    // Example 3: Multi-hop question
    // Classified as "multi_hop_reasoning" β†’ Routes to multi_hop_qa_pipeline
    let response3 = system.process(
        "What year did the director of Inception win his first Oscar?"
    )?;
    println!("Answer: {}", response3.answer);
    println!("Pipeline used: {}", response3.pipeline_used);
    // Output: "2024", "multi_hop_qa_pipeline"

    // Example 4: Code question
    // Classified as "code_analysis" but pipeline not implemented
    // β†’ Falls back to default_pipeline
    let response4 = system.process(
        "Fix this Rust code: fn add(a: i32 b: i32) -> i32 { a + b }"
    )?;
    println!("Answer: {}", response4.answer);
    println!("Pipeline used: {}", response4.pipeline_used);
    // Output: [best effort answer], "default_pipeline"

    // Example 5: Creative request
    // Classified with low confidence or unknown type
    // β†’ Routes to default_pipeline
    let response5 = system.process("Write a haiku about AI")?;
    println!("Answer: {}", response5.answer);
    println!("Pipeline used: {}", response5.pipeline_used);
    // Output: [haiku], "default_pipeline"

    Ok(())
}

Incremental Development Strategy

Phase 1: Minimal Viable System

// Start with classifier + default only
let system = AirsDSPSystem {
    task_classifier: build_task_classifier()?,
    default_pipeline: build_default_pipeline()?,
    // All specialized pipelines: None
    math_pipeline: None,
    qa_pipeline: None,
    // ... etc
};

Capabilities: System works, classifies tasks, but uses default for everything

Advantage: Can deploy and get feedback before building specialized pipelines

Phase 2: Add First Specialized Pipeline

let system = AirsDSPSystem {
    task_classifier: build_task_classifier()?,
    math_pipeline: Some(build_math_pipeline()?), // NEW!
    default_pipeline: build_default_pipeline()?,
    // Other pipelines still None
    qa_pipeline: None,
    // ... etc
};

Capabilities: Math queries get optimized handling, everything else uses default

Advantage: Can focus on one task type at a time, measure improvement

Phase 3: Add More Specialized Pipelines

let system = AirsDSPSystem {
    task_classifier: build_task_classifier()?,
    math_pipeline: Some(build_math_pipeline()?),
    qa_pipeline: Some(build_qa_pipeline()?), // NEW!
    multi_hop_qa_pipeline: Some(build_multi_hop_pipeline()?), // NEW!
    default_pipeline: build_default_pipeline()?,
    // Still some None
    code_analysis_pipeline: None,
    // ... etc
};

Capabilities: Multiple task types optimized, growing coverage

Advantage: Incremental improvement, measure impact of each addition

Phase 4: Mature System

let system = AirsDSPSystem {
    task_classifier: build_task_classifier()?,
    // Most/all specialized pipelines implemented
    math_pipeline: Some(build_math_pipeline()?),
    qa_pipeline: Some(build_qa_pipeline()?),
    multi_hop_qa_pipeline: Some(build_multi_hop_pipeline()?),
    code_analysis_pipeline: Some(build_code_pipeline()?), // NOW!
    conversational_pipeline: Some(build_conversational_pipeline()?), // NOW!
    legal_analysis_pipeline: Some(build_legal_pipeline()?), // NOW!
    default_pipeline: build_default_pipeline()?,
};

Capabilities: Comprehensive coverage, default handles only edge cases

Advantage: Optimized for common tasks, graceful for rare tasks

Advanced Patterns

Pattern 1: Confidence-Based Routing

fn select_pipeline_smart(&self, classification: &TaskClassification) -> &Pipeline {
    match classification.confidence {
        c if c >= 0.90 => {
            // High confidence: definitely use specialized
            self.get_specialized(&classification.task_type)
                .unwrap_or(&self.default_pipeline)
        }
        c if c >= 0.75 => {
            // Medium confidence: use specialized with logging
            log::info!("Medium confidence: {:.2}", c);
            self.get_specialized(&classification.task_type)
                .unwrap_or(&self.default_pipeline)
        }
        c if c >= 0.60 => {
            // Low confidence: prefer default
            log::warn!("Low confidence: {:.2}, using default", c);
            &self.default_pipeline
        }
        _ => {
            // Very low confidence: definitely default
            &self.default_pipeline
        }
    }
}

Pattern 2: Fallback Chain

fn select_with_fallback(&self, task_type: &str) -> &Pipeline {
    // Try exact match
    if let Some(p) = self.get_exact_pipeline(task_type) {
        return p;
    }

    // Try category match (e.g., "math_algebra" β†’ "math_general")
    if let Some(p) = self.get_category_pipeline(task_type) {
        return p;
    }

    // Ultimate fallback
    &self.default_pipeline
}

Pattern 3: Ensemble Execution

pub fn process_with_ensemble(&self, input: &str) -> Result<Response> {
    let classification = self.classify_task(input)?;

    // If confidence is ambiguous, try multiple pipelines
    if classification.confidence < 0.80 {
        let results = vec![
            self.specialized_pipeline.execute(input)?,
            self.default_pipeline.execute(input)?,
        ];

        // Select best result (could use another pipeline for this!)
        return self.select_best_result(results);
    }

    // High confidence: single pipeline
    let pipeline = self.select_pipeline(&classification)?;
    Ok(pipeline.execute(input)?)
}

Pattern 4: Usage Tracking and Learning

pub struct UsageTracker {
    routing_decisions: Vec<RoutingDecision>,
}

pub struct RoutingDecision {
    input: String,
    classified_as: String,
    routed_to: String,
    confidence: f32,
    user_feedback: Option<Feedback>,
}

impl AirsDSPSystem {
    pub fn process_with_tracking(&mut self, input: &str) -> Result<Response> {
        let classification = self.classify_task(input)?;
        let pipeline = self.select_pipeline(&classification)?;
        let result = pipeline.execute(input)?;

        // Track this decision
        self.usage_tracker.record(RoutingDecision {
            input: input.to_string(),
            classified_as: classification.task_type.clone(),
            routed_to: pipeline.name().to_string(),
            confidence: classification.confidence,
            user_feedback: None,
        });

        Ok(result)
    }

    pub fn analyze_routing_patterns(&self) -> RoutingInsights {
        // Analyze which classifications work well
        // Identify misclassifications
        // Suggest new specialized pipelines for common patterns
        self.usage_tracker.analyze()
    }
}

Key Architectural Benefits

1. Flexibility

βœ… Handles diverse inputs gracefully
βœ… Adapts to task type automatically
βœ… No manual routing logic in application code

2. Incremental Development

βœ… Start minimal, add specialized pipelines over time
βœ… Each pipeline can be developed independently
βœ… Measure impact of each specialized pipeline

3. Robustness

βœ… Always has a fallback (default pipeline)
βœ… Never fails due to unknown task type
βœ… Graceful degradation for edge cases

4. Performance Optimization

βœ… Specialized pipelines optimize common tasks
βœ… Default handles rare cases adequately
βœ… Can measure and optimize routing decisions

5. Maintainability

βœ… Clear separation of concerns
βœ… Each pipeline has single responsibility
βœ… Easy to test and debug individual pipelines

6. Extensibility

βœ… Easy to add new task types
βœ… Can add new specialized pipelines without changing core system
βœ… Configuration-driven behavior

Design Considerations

Task Classification Accuracy

Critical: Task classifier must be accurate

Strategies: - Use diverse demonstrations covering many task types - Include confidence scoring - Set appropriate confidence thresholds - Log and monitor misclassifications - Collect feedback to improve classifier

Default Pipeline Quality

Critical: Default pipeline must handle anything reasonably

Strategies: - Use general-purpose demonstrations - Include retrieval capability - Focus on robustness over optimization - Handle unexpected inputs gracefully

Pipeline Specialization Granularity

Question: How specialized should pipelines be?

Guidelines: - Too general: Loses optimization benefit - Too specific: Too many pipelines to maintain - Sweet spot: Common task categories that benefit from optimization

Examples: - βœ… Good: "math", "qa", "multi_hop", "code", "legal" - ❌ Too specific: "addition", "subtraction", "multiplication" - ❌ Too general: "text_processing"

Confidence Threshold Tuning

Question: What confidence threshold for specialized pipelines?

Guidelines: - Too high (e.g., 0.95): Rarely use specialized pipelines - Too low (e.g., 0.50): Risk using wrong pipeline - Recommended: 0.70 - 0.80 range - Monitor and adjust based on performance

Performance Expectations

Classification Overhead

Cost: One additional pipeline execution (task classifier)

Benefit: Ability to route to optimal pipeline

Net Impact: Positive if specialized pipelines significantly outperform default

Expected Improvements

Based on DSP research benchmarks: - Specialized math pipeline: 20-40% improvement over default - Specialized multi-hop pipeline: 8-39% improvement over simple retrieval - Overall system: Depends on task distribution

Optimization Opportunities

  1. Cache classifications for repeated similar inputs
  2. Parallelize classification and default pipeline execution
  3. Profile which task types are most common
  4. Prioritize specialized pipeline development for common tasks

Testing Strategy

Unit Testing

#[cfg(test)]
mod tests {
    #[test]
    fn test_task_classification() {
        let system = AirsDSPSystem::new().unwrap();

        let classification = system.classify_task("What is 15% of 240?").unwrap();
        assert_eq!(classification.task_type, "math");
        assert!(classification.confidence > 0.8);
    }

    #[test]
    fn test_pipeline_routing() {
        let system = AirsDSPSystem::new().unwrap();

        let response = system.process("What is 15% of 240?").unwrap();
        assert_eq!(response.pipeline_used, "math_pipeline");
    }

    #[test]
    fn test_fallback_to_default() {
        let system = AirsDSPSystem::new().unwrap();

        // Weird input that doesn't match any specialized pipeline
        let response = system.process("asdfjkl;").unwrap();
        assert_eq!(response.pipeline_used, "default_pipeline");
    }
}

Integration Testing

#[test]
fn test_math_pipeline_accuracy() {
    let system = AirsDSPSystem::new().unwrap();

    let test_cases = vec![
        ("What is 15% of 240?", "36"),
        ("What is the square root of 144?", "12"),
        // More test cases
    ];

    for (question, expected) in test_cases {
        let response = system.process(question).unwrap();
        assert_eq!(response.answer, expected);
        assert_eq!(response.pipeline_used, "math_pipeline");
    }
}

Key Takeaways

For System Architecture

  1. βœ… Task classifier is a DSP pipeline - uses DSP to classify DSP tasks
  2. βœ… Specialized pipelines are optional - system works without them
  3. βœ… Default pipeline is mandatory - ensures graceful handling
  4. βœ… Routing is confidence-based - can tune for accuracy vs coverage
  5. βœ… System is incrementally buildable - start simple, add complexity

For Implementation

  1. βœ… Build task classifier first - foundation for all routing
  2. βœ… Build default pipeline second - ensures system always works
  3. βœ… Add specialized pipelines incrementally - measure each addition
  4. βœ… Log routing decisions - understand system behavior
  5. βœ… Track usage patterns - guide future development

For Production

  1. βœ… Monitor classification accuracy - key to system performance
  2. βœ… Measure specialized vs default usage - optimize for common cases
  3. βœ… Collect user feedback - improve classifier and pipelines
  4. βœ… Profile task distribution - prioritize pipeline development
  5. βœ… Maintain default pipeline quality - safety net for edge cases

References

  • DSP Framework Core: dsp_framework_core.md
  • DSP Pipeline Architecture Examples: dsp_pipeline_architecture_examples.md
  • DSP Reasoning Strategies: dsp_reasoning_strategies_implementation.md
  • DSP/DSPy Comparative Evolution: dsp_dspy_comparative_evolution.md

Implementation Patterns

  • Task-level vs Query-level distinction
  • Incremental system development
  • Graceful degradation through fallback
  • Confidence-based routing

Document Status: Complete
Implementation Readiness: High - Production-ready architectural pattern
Next Steps: Use this pattern as foundation for AirsDSP system architecture design