AirsDSP Product Differentiation Strategy¶
Document Type: Knowledge Base - Product Strategy
Created: 2025-10-20
Last Updated: 2025-10-20
Confidence Level: High
Source: Product analysis, market differentiation, and feature planning
Purpose: Define features that make AirsDSP more valuable than DSPy for production use
Overview¶
This document outlines the strategic features that differentiate AirsDSP from DSPy, focusing on production-readiness, explicit control, and developer experience. While DSPy focuses on automated optimization, AirsDSP targets developers who value transparency, flexibility, and comprehensive tooling.
Core Differentiation Philosophy¶
AirsDSP Value Proposition¶
Target Users: Developers and organizations who prioritize: - ✅ Explicit Control: Full visibility and control over pipeline behavior - ✅ Production Readiness: Comprehensive tooling for real-world deployment - ✅ Flexibility: Not locked into specific models or providers - ✅ Debuggability: Ability to understand and fix issues quickly - ✅ Cost Management: Tools to track and optimize expenses - ✅ Quality Assurance: Comprehensive evaluation and testing
Strategic Positioning¶
DSPy Focus:
- Automated optimization
- Declarative programming
- Compiler-driven improvements
- Black-box optimization
AirsDSP Focus:
- Explicit architecture
- Manual optimization
- Full transparency
- Production tooling
Critical Differentiation Features¶
1. Multiple Model Support¶
Vision¶
Provide true model flexibility - not locked into any single provider or model, with support for hybrid architectures.
Core Capabilities¶
A. Multiple Provider Support
pub enum LanguageModelProvider {
// Commercial APIs
OpenAI(OpenAIConfig),
Anthropic(AnthropicConfig),
Cohere(CohereConfig),
GoogleVertexAI(VertexConfig),
Azure(AzureConfig),
// Open Source / Local
Ollama(OllamaConfig),
LlamaCpp(LlamaCppConfig),
HuggingFace(HuggingFaceConfig),
VLLM(VLLMConfig),
// Custom
Custom(Box<dyn LanguageModel>),
}
pub struct ModelConfig {
pub provider: LanguageModelProvider,
pub model_name: String,
pub temperature: Option<f32>,
pub max_tokens: Option<usize>,
pub timeout: Option<Duration>,
}
B. Hybrid Pipeline (Different Models per Stage)
// Use expensive smart model for reasoning, cheap fast model for formatting
let hybrid_pipeline = Pipeline::new()
.demonstrate(examples)
.predict_with_model(
PredictStage::new("complex_reasoning"),
LanguageModel::from_config(ModelConfig {
provider: LanguageModelProvider::OpenAI(OpenAIConfig::default()),
model_name: "gpt-4".to_string(),
temperature: Some(0.7),
..Default::default()
})
)
.search(SearchStage::new("retrieval"))
.predict_with_model(
PredictStage::new("format_output"),
LanguageModel::from_config(ModelConfig {
provider: LanguageModelProvider::Ollama(OllamaConfig::default()),
model_name: "llama3".to_string(),
temperature: Some(0.3),
..Default::default()
})
);
C. Model Fallback Chain
pub struct ModelFallbackChain {
primary: Box<dyn LanguageModel>,
fallbacks: Vec<Box<dyn LanguageModel>>,
retry_config: RetryConfig,
}
impl ModelFallbackChain {
pub async fn generate(&self, prompt: &str) -> Result<String> {
// Try primary model
match timeout(
self.retry_config.timeout,
self.primary.generate(prompt)
).await {
Ok(Ok(result)) => return Ok(result),
Ok(Err(e)) => log::warn!("Primary model failed: {}", e),
Err(_) => log::warn!("Primary model timeout"),
}
// Try fallbacks
for (i, fallback) in self.fallbacks.iter().enumerate() {
match fallback.generate(prompt).await {
Ok(result) => {
log::info!("Fallback {} succeeded", i);
return Ok(result);
}
Err(e) => log::warn!("Fallback {} failed: {}", i, e),
}
}
Err(Error::AllModelsFailed)
}
}
D. Model Ensemble (Multi-Model Voting)
pub struct ModelEnsemble {
models: Vec<Box<dyn LanguageModel>>,
aggregation: AggregationStrategy,
}
pub enum AggregationStrategy {
MajorityVote,
WeightedVote(HashMap<String, f32>),
BestOfN { judge: Box<dyn LanguageModel> },
Consensus { threshold: f32 },
}
impl ModelEnsemble {
pub async fn predict_with_ensemble(
&self,
prompt: &str
) -> Result<EnsembleResult> {
// Get predictions from all models
let predictions = join_all(
self.models.iter()
.map(|m| m.generate(prompt))
).await;
// Aggregate based on strategy
let final_result = match &self.aggregation {
AggregationStrategy::MajorityVote => {
self.majority_vote(&predictions)
}
AggregationStrategy::BestOfN { judge } => {
self.judge_best(&predictions, judge).await?
}
// ... other strategies
};
Ok(EnsembleResult {
final_answer: final_result,
individual_predictions: predictions,
agreement_score: self.compute_agreement(&predictions),
})
}
}
E. Intelligent Model Routing
pub struct ModelRouter {
classifier: Box<dyn LanguageModel>, // Small, fast model
task_models: HashMap<TaskType, Box<dyn LanguageModel>>,
cost_optimizer: CostOptimizer,
}
impl ModelRouter {
pub async fn route_and_execute(&self, input: &str) -> Result<String> {
// Classify task with small model
let classification = self.classifier.classify_task(input).await?;
// Select appropriate model based on task
let model = self.select_optimal_model(&classification)?;
// Execute with selected model
model.generate(input).await
}
fn select_optimal_model(
&self,
classification: &TaskClassification
) -> Result<&Box<dyn LanguageModel>> {
// Consider task complexity, cost constraints, latency requirements
let model = self.cost_optimizer.optimize_selection(
&classification,
&self.task_models,
)?;
Ok(model)
}
}
Why This Matters¶
| Benefit | Description | Business Impact |
|---|---|---|
| Cost Optimization | Use cheap models for simple tasks | 50-80% cost reduction |
| Performance | Use fast models for latency-sensitive operations | Better UX |
| Reliability | Fallback when primary fails | Higher uptime |
| Quality | Ensemble for critical decisions | Better accuracy |
| Flexibility | Not vendor-locked | Negotiation power |
| Privacy | Local models for sensitive data | Compliance |
Implementation Priority¶
Phase 1 (Months 1-2): - ✅ Basic provider support (OpenAI, Anthropic, local) - ✅ Single model per pipeline - ✅ Simple model configuration
Phase 2 (Months 3-4): - ✅ Hybrid pipelines (different models per stage) - ✅ Model fallback chain - ✅ Basic cost tracking
Phase 3 (Months 5-6): - ✅ Model ensemble - ✅ Intelligent routing - ✅ Advanced cost optimization
2. AI-Powered Evaluation (AI-as-a-Judge)¶
Vision¶
Provide comprehensive, automated evaluation following G-Eval methodology, similar to DeepEval but integrated with DSP pipelines.
G-Eval Methodology¶
G-Eval (GPT-based Evaluation) uses LLMs to evaluate LLM outputs based on specific criteria.
Core Principles: 1. Use LLM as judge with explicit criteria 2. Chain-of-thought evaluation reasoning 3. Normalized scoring (0-1 or 1-5 scale) 4. Multiple evaluation dimensions
Core Evaluation Framework¶
A. Base Judge Interface
pub trait LLMJudge {
async fn evaluate(
&self,
input: &EvaluationInput,
criteria: &EvaluationCriteria,
) -> Result<JudgmentResult>;
}
pub struct EvaluationInput {
pub task_description: String,
pub input: String,
pub output: String,
pub reference: Option<String>, // Ground truth if available
pub context: Option<String>, // Retrieved context if applicable
}
pub struct EvaluationCriteria {
pub name: String,
pub description: String,
pub scale: ScaleType,
pub instructions: String,
}
pub enum ScaleType {
Binary, // 0 or 1
Likert5, // 1-5
Percentage, // 0-100
Continuous, // 0.0-1.0
}
pub struct JudgmentResult {
pub score: f32,
pub reasoning: String,
pub criterion: String,
pub confidence: Option<f32>,
}
B. G-Eval Implementation
pub struct GEvalJudge {
judge_model: Box<dyn LanguageModel>,
criteria: Vec<EvaluationCriteria>,
use_cot: bool, // Chain-of-thought reasoning
}
impl GEvalJudge {
pub fn new(judge_model: Box<dyn LanguageModel>) -> Self {
Self {
judge_model,
criteria: Vec::new(),
use_cot: true,
}
}
pub fn with_criterion(mut self, criterion: EvaluationCriteria) -> Self {
self.criteria.push(criterion);
self
}
async fn evaluate_single_criterion(
&self,
input: &EvaluationInput,
criterion: &EvaluationCriteria,
) -> Result<JudgmentResult> {
let prompt = self.build_evaluation_prompt(input, criterion);
let response = self.judge_model.generate(&prompt).await?;
self.parse_judgment(response, criterion)
}
fn build_evaluation_prompt(
&self,
input: &EvaluationInput,
criterion: &EvaluationCriteria,
) -> String {
format!(
"Task: {task_description}\n\n\
Evaluation Criterion: {criterion_name}\n\
Description: {criterion_desc}\n\
Scale: {scale}\n\n\
Input: {input}\n\
Output: {output}\n\
{reference}\n\
{context}\n\n\
Instructions:\n\
{instructions}\n\n\
{cot_instruction}\n\n\
Please provide your evaluation:",
task_description = input.task_description,
criterion_name = criterion.name,
criterion_desc = criterion.description,
scale = self.format_scale(&criterion.scale),
input = input.input,
output = input.output,
reference = input.reference.as_ref()
.map(|r| format!("Reference Answer: {}", r))
.unwrap_or_default(),
context = input.context.as_ref()
.map(|c| format!("Context: {}", c))
.unwrap_or_default(),
instructions = criterion.instructions,
cot_instruction = if self.use_cot {
"First, explain your reasoning step by step. Then provide your score."
} else {
"Provide your score with brief justification."
},
)
}
}
impl LLMJudge for GEvalJudge {
async fn evaluate(
&self,
input: &EvaluationInput,
criteria: &EvaluationCriteria,
) -> Result<JudgmentResult> {
self.evaluate_single_criterion(input, criteria).await
}
}
C. Common Evaluation Criteria
pub mod criteria {
use super::*;
// Coherence: How well does the output flow logically?
pub fn coherence() -> EvaluationCriteria {
EvaluationCriteria {
name: "Coherence".to_string(),
description: "Logical flow and organization of the response".to_string(),
scale: ScaleType::Likert5,
instructions: "\
Score 1: Completely incoherent, random statements\n\
Score 2: Mostly incoherent with some related ideas\n\
Score 3: Somewhat coherent but disorganized\n\
Score 4: Mostly coherent with good flow\n\
Score 5: Perfectly coherent and well-organized".to_string(),
}
}
// Relevance: How relevant is the output to the input?
pub fn relevance() -> EvaluationCriteria {
EvaluationCriteria {
name: "Relevance".to_string(),
description: "How well the output addresses the input question".to_string(),
scale: ScaleType::Likert5,
instructions: "\
Score 1: Completely irrelevant\n\
Score 2: Mostly irrelevant, tangentially related\n\
Score 3: Somewhat relevant but missing key points\n\
Score 4: Mostly relevant with minor issues\n\
Score 5: Perfectly relevant and on-topic".to_string(),
}
}
// Faithfulness: Is the output faithful to the provided context?
pub fn faithfulness() -> EvaluationCriteria {
EvaluationCriteria {
name: "Faithfulness".to_string(),
description: "Whether the output is grounded in provided context".to_string(),
scale: ScaleType::Likert5,
instructions: "\
Score 1: Contains hallucinations, contradicts context\n\
Score 2: Mostly unfaithful with some accurate info\n\
Score 3: Mix of faithful and unfaithful statements\n\
Score 4: Mostly faithful with minor extrapolations\n\
Score 5: Completely faithful to context".to_string(),
}
}
// Correctness: Is the output factually correct?
pub fn correctness() -> EvaluationCriteria {
EvaluationCriteria {
name: "Correctness".to_string(),
description: "Factual accuracy of the output".to_string(),
scale: ScaleType::Likert5,
instructions: "\
Compare output against reference answer.\n\
Score 1: Completely incorrect\n\
Score 2: Mostly incorrect\n\
Score 3: Partially correct\n\
Score 4: Mostly correct with minor errors\n\
Score 5: Completely correct".to_string(),
}
}
// Conciseness: Is the output appropriately concise?
pub fn conciseness() -> EvaluationCriteria {
EvaluationCriteria {
name: "Conciseness".to_string(),
description: "Whether output is appropriately brief".to_string(),
scale: ScaleType::Likert5,
instructions: "\
Score 1: Extremely verbose, excessive repetition\n\
Score 2: Too verbose with unnecessary details\n\
Score 3: Acceptable length but could be more concise\n\
Score 4: Mostly concise with minor verbosity\n\
Score 5: Perfectly concise, every word adds value".to_string(),
}
}
// Helpfulness: How helpful is the output to the user?
pub fn helpfulness() -> EvaluationCriteria {
EvaluationCriteria {
name: "Helpfulness".to_string(),
description: "Overall usefulness of the response".to_string(),
scale: ScaleType::Likert5,
instructions: "\
Score 1: Not helpful at all\n\
Score 2: Minimally helpful\n\
Score 3: Somewhat helpful but incomplete\n\
Score 4: Very helpful with minor gaps\n\
Score 5: Extremely helpful and comprehensive".to_string(),
}
}
}
D. Pipeline Evaluator
pub struct PipelineEvaluator {
pipeline: Pipeline,
judge: Box<dyn LLMJudge>,
test_dataset: Vec<TestCase>,
}
pub struct TestCase {
pub task_description: String,
pub input: String,
pub expected_output: Option<String>,
pub metadata: HashMap<String, Value>,
}
impl PipelineEvaluator {
pub async fn evaluate(&self, criteria: Vec<EvaluationCriteria>) -> EvaluationReport {
let mut results = Vec::new();
for test_case in &self.test_dataset {
// Execute pipeline
let output = self.pipeline.execute(&test_case.input).await?;
// Evaluate across all criteria
let mut scores = HashMap::new();
for criterion in &criteria {
let eval_input = EvaluationInput {
task_description: test_case.task_description.clone(),
input: test_case.input.clone(),
output: output.clone(),
reference: test_case.expected_output.clone(),
context: None,
};
let judgment = self.judge.evaluate(&eval_input, criterion).await?;
scores.insert(criterion.name.clone(), judgment);
}
results.push(TestResult {
input: test_case.input.clone(),
output,
expected: test_case.expected_output.clone(),
scores,
});
}
EvaluationReport::new(results, criteria)
}
}
E. Evaluation Report
pub struct EvaluationReport {
pub results: Vec<TestResult>,
pub summary: EvaluationSummary,
pub criteria_used: Vec<EvaluationCriteria>,
}
pub struct EvaluationSummary {
pub total_tests: usize,
pub average_scores: HashMap<String, f32>,
pub score_distributions: HashMap<String, ScoreDistribution>,
pub pass_rate: f32, // If pass threshold is defined
}
impl EvaluationReport {
pub fn to_json(&self) -> Result<String>;
pub fn to_markdown(&self) -> String;
pub fn to_html(&self) -> String;
pub fn filter_by_score(&self, criterion: &str, min_score: f32) -> Vec<&TestResult>;
pub fn get_worst_cases(&self, criterion: &str, n: usize) -> Vec<&TestResult>;
pub fn get_best_cases(&self, criterion: &str, n: usize) -> Vec<&TestResult>;
}
Pre-built Evaluation Suites¶
pub mod eval_suites {
use super::*;
// RAG System Evaluation
pub fn rag_evaluation_suite() -> Vec<EvaluationCriteria> {
vec![
criteria::faithfulness(),
criteria::relevance(),
criteria::correctness(),
]
}
// Question Answering Evaluation
pub fn qa_evaluation_suite() -> Vec<EvaluationCriteria> {
vec![
criteria::correctness(),
criteria::relevance(),
criteria::conciseness(),
]
}
// Conversational Agent Evaluation
pub fn conversational_suite() -> Vec<EvaluationCriteria> {
vec![
criteria::helpfulness(),
criteria::relevance(),
criteria::coherence(),
]
}
// Code Generation Evaluation
pub fn code_generation_suite() -> Vec<EvaluationCriteria> {
vec![
criteria::correctness(),
criteria::conciseness(),
// Could add code-specific criteria
]
}
}
Why This Matters¶
| Benefit | Description | Impact |
|---|---|---|
| Quality Assurance | Automated quality checking | Catch issues early |
| Regression Detection | Track performance over time | Prevent degradation |
| Objective Metrics | LLM-based scoring | Reduce human eval cost |
| Multi-Dimensional | Evaluate multiple aspects | Comprehensive view |
| Production Confidence | Deploy with measured quality | Risk mitigation |
Implementation Priority¶
Phase 1 (Months 3-4): - ✅ G-Eval judge implementation - ✅ Common criteria (faithfulness, relevance, correctness) - ✅ Basic evaluation report
Phase 2 (Months 5-6): - ✅ Pre-built evaluation suites - ✅ Pipeline evaluator integration - ✅ Report visualization
Phase 3 (Months 7-8): - ✅ Custom criteria builder - ✅ Continuous evaluation - ✅ A/B testing framework
3. DSP Debugging Capabilities¶
Vision¶
Provide comprehensive debugging tools that leverage DSP's explicit architecture for deep introspection and troubleshooting.
Core Debugging Features¶
A. Stage-by-Stage Execution Inspector
pub struct ExecutionInspector {
pipeline: Pipeline,
breakpoints: Vec<Breakpoint>,
capture_level: CaptureLevel,
}
pub enum CaptureLevel {
Minimal, // Only stage outputs
Standard, // Outputs + timings
Detailed, // Outputs + timings + context
Verbose, // Everything including prompts
}
pub struct Breakpoint {
pub stage_index: usize,
pub condition: Option<BreakCondition>,
}
impl ExecutionInspector {
pub fn execute_with_inspection(&self, input: &str) -> Result<InspectionReport> {
let mut trace = ExecutionTrace::new();
for (i, stage) in self.pipeline.stages.iter().enumerate() {
// Pre-execution capture
let pre_state = self.capture_state(i, &trace)?;
trace.add_pre_state(i, pre_state);
// Execute stage
let start = Instant::now();
let output = stage.execute(&trace.context())?;
let duration = start.elapsed();
// Post-execution capture
let post_state = self.capture_state(i, &trace)?;
trace.add_stage_result(StageResult {
index: i,
name: stage.name().to_string(),
input: trace.get_input_for_stage(i),
output: output.clone(),
duration,
pre_state,
post_state,
});
// Check breakpoint
if self.should_break(i, &output) {
return Ok(InspectionReport::Paused {
trace,
paused_at: i,
});
}
}
Ok(InspectionReport::Completed(trace))
}
}
B. Prompt Inspector
pub struct PromptInspector {
capture_prompts: bool,
}
pub struct PromptCapture {
pub stage_name: String,
pub stage_index: usize,
// Prompt construction steps
pub base_template: String,
pub with_demonstrations: String,
pub with_context: String,
pub final_prompt: String,
// Model interaction
pub model_used: String,
pub model_config: ModelConfig,
pub model_response: String,
pub tokens_used: TokenUsage,
// Timing
pub prompt_construction_time: Duration,
pub model_call_time: Duration,
}
impl PromptInspector {
pub fn capture_predict_stage(
&mut self,
stage: &PredictStage,
context: &Context,
) -> PromptCapture {
let start = Instant::now();
let base = stage.get_base_template();
let with_demos = stage.add_demonstrations(base, context);
let with_context = stage.add_context(with_demos, context);
let final_prompt = stage.finalize_prompt(with_context);
let construction_time = start.elapsed();
PromptCapture {
stage_name: stage.name().to_string(),
stage_index: stage.index(),
base_template: base,
with_demonstrations: with_demos,
with_context: with_context,
final_prompt: final_prompt,
prompt_construction_time: construction_time,
// model_response filled after execution
..Default::default()
}
}
pub fn export_to_markdown(&self, captures: &[PromptCapture]) -> String {
// Generate markdown report with all prompts
}
}
C. Context Visualizer
pub struct ContextVisualizer;
impl ContextVisualizer {
pub fn visualize_at_stage(
context: &Context,
stage_index: usize,
) -> String {
format!(
"📍 Context at Stage {}\n\
\n\
📚 Demonstrations:\n{}\n\
\n\
📜 History:\n{}\n\
\n\
🏷️ Metadata:\n{}\n",
stage_index,
Self::format_demonstrations(&context.demonstrations),
Self::format_history(&context.history),
Self::format_metadata(&context.metadata),
)
}
pub fn visualize_diff(
before: &Context,
after: &Context,
) -> String {
// Show what changed in context after stage execution
}
}
D. Execution Trace Visualization
pub struct TraceVisualizer;
impl TraceVisualizer {
pub fn visualize_as_graph(trace: &ExecutionTrace) -> String {
// ASCII art or Mermaid diagram of execution flow
format!(
"Pipeline Execution Trace:\n\
\n\
Input\n\
↓\n\
{}\n\
↓\n\
Output",
trace.stages.iter()
.map(|s| format!(
"[{}] {} ({}ms)",
s.index,
s.name,
s.duration.as_millis()
))
.collect::<Vec<_>>()
.join("\n ↓\n")
)
}
pub fn export_to_html(trace: &ExecutionTrace) -> String {
// Interactive HTML visualization
}
pub fn export_to_json(trace: &ExecutionTrace) -> String {
// JSON format for external tools
}
}
E. Performance Profiler
pub struct PerformanceProfiler {
enable_profiling: bool,
}
pub struct ProfileReport {
pub total_duration: Duration,
pub stage_durations: Vec<StageDuration>,
pub model_call_times: Vec<ModelCallProfile>,
pub token_usage: TokenUsageStats,
pub bottlenecks: Vec<Bottleneck>,
pub optimization_suggestions: Vec<OptimizationSuggestion>,
}
pub struct Bottleneck {
pub stage_index: usize,
pub stage_name: String,
pub duration: Duration,
pub percentage_of_total: f32,
pub reason: BottleneckReason,
}
impl PerformanceProfiler {
pub fn profile(
&self,
pipeline: &Pipeline,
input: &str,
) -> Result<ProfileReport> {
// Profile execution and identify bottlenecks
let trace = pipeline.execute_with_profiling(input)?;
let bottlenecks = self.identify_bottlenecks(&trace);
let suggestions = self.generate_suggestions(&bottlenecks);
Ok(ProfileReport {
total_duration: trace.total_duration,
stage_durations: trace.stage_durations,
model_call_times: trace.model_calls,
token_usage: trace.token_stats,
bottlenecks,
optimization_suggestions: suggestions,
})
}
}
F. Interactive Debugger (REPL-style)
pub struct InteractiveDebugger {
pipeline: Pipeline,
current_stage: usize,
execution_state: ExecutionState,
command_history: Vec<String>,
}
impl InteractiveDebugger {
pub fn new(pipeline: Pipeline) -> Self {
Self {
pipeline,
current_stage: 0,
execution_state: ExecutionState::NotStarted,
command_history: Vec::new(),
}
}
// Debugger commands
pub fn step(&mut self) -> Result<StepResult>;
pub fn continue_execution(&mut self) -> Result<ExecutionResult>;
pub fn step_back(&mut self) -> Result<()>; // If history maintained
pub fn goto_stage(&mut self, index: usize) -> Result<()>;
// Inspection commands
pub fn inspect_context(&self) -> Context;
pub fn inspect_stage(&self, index: usize) -> StageInfo;
pub fn show_prompt(&self, stage_index: usize) -> String;
// Modification commands (for experimentation)
pub fn modify_context(&mut self, modifications: ContextMods) -> Result<()>;
pub fn modify_stage_output(&mut self, stage: usize, new_output: String);
// Breakpoint commands
pub fn set_breakpoint(&mut self, stage: usize);
pub fn remove_breakpoint(&mut self, stage: usize);
pub fn list_breakpoints(&self) -> Vec<usize>;
// Evaluation commands
pub fn evaluate_expression(&self, expr: &str) -> Result<Value>;
}
Debugging Workflow Example¶
// Create debugger
let debugger = InteractiveDebugger::new(pipeline);
// Set breakpoints
debugger.set_breakpoint(2)?; // Break after stage 2
// Start execution
debugger.step()?; // Execute first stage
// Inspect what happened
let context = debugger.inspect_context();
println!("Context: {}", context);
let prompt = debugger.show_prompt(0)?;
println!("Prompt used: {}", prompt);
// Continue to breakpoint
debugger.continue_execution()?; // Stops at stage 2
// Inspect intermediate state
let stage_2_output = debugger.inspect_stage(2)?;
println!("Stage 2 output: {}", stage_2_output);
// Modify and re-run (for experimentation)
debugger.modify_stage_output(1, "Modified output".to_string())?;
debugger.goto_stage(2)?;
debugger.continue_execution()?;
Why This Matters¶
| Benefit | Description | Impact |
|---|---|---|
| Fast Troubleshooting | Quickly identify issues | Reduced debug time |
| Understanding | See exactly what happens | Better intuition |
| Optimization | Identify bottlenecks | Performance gains |
| Verification | Ensure expected behavior | Quality assurance |
| Experimentation | Try modifications easily | Faster iteration |
Implementation Priority¶
Phase 1 (Months 2-3): - ✅ Execution inspector - ✅ Basic trace visualization - ✅ Prompt inspector
Phase 2 (Months 4-5): - ✅ Context visualizer - ✅ Performance profiler - ✅ HTML/JSON export
Phase 3 (Months 6-7): - ✅ Interactive debugger - ✅ Breakpoint system - ✅ Modification capabilities
Additional High-Value Features¶
4. Pipeline Versioning and Serialization¶
Why Critical: Production systems need reproducibility and version control.
pub struct PipelineVersion {
pub id: PipelineId,
pub version: semver::Version,
pub pipeline: Pipeline,
pub metadata: VersionMetadata,
pub created_at: DateTime<Utc>,
pub created_by: String,
}
impl Pipeline {
pub fn to_json(&self) -> Result<String>;
pub fn from_json(json: &str) -> Result<Self>;
pub fn to_rust_code(&self) -> Result<String>;
pub fn compute_content_hash(&self) -> String;
}
5. Caching System¶
Why Critical: Reduce costs and latency.
pub struct CachedPipeline {
pipeline: Pipeline,
cache: Box<dyn Cache>,
cache_strategy: CacheStrategy,
}
pub enum CacheStrategy {
Stage(Vec<usize>), // Cache specific stages
Full, // Cache full pipeline
Adaptive, // Smart caching
}
6. Cost Tracking¶
Why Critical: LM calls are expensive.
pub struct CostTracker {
token_costs: HashMap<ModelProvider, TokenCost>,
total_cost: f64,
budget_alerts: Vec<BudgetAlert>,
}
impl CostTracker {
pub fn track_execution(&mut self, trace: &ExecutionTrace) -> CostReport;
pub fn estimate_cost(&self, pipeline: &Pipeline, input: &str) -> f64;
pub fn optimize_for_budget(&self, budget: f64) -> OptimizationPlan;
}
7. Observability Integration¶
Why Critical: Production monitoring.
pub struct ObservablePipeline {
pipeline: Pipeline,
metrics: MetricsCollector,
tracer: Tracer,
logger: Logger,
}
// OpenTelemetry integration
impl ObservablePipeline {
pub async fn execute_with_telemetry(&self, input: &str) -> Result<String> {
let span = self.tracer.start_span("pipeline_execution");
// ... execution with metrics
}
}
Feature Comparison: AirsDSP vs DSPy¶
| Feature | DSPy | AirsDSP | Advantage |
|---|---|---|---|
| Architecture | Declarative, automated | Explicit, manual | Full control |
| Multiple Models | Limited | ✅ Full support | Cost, flexibility |
| Hybrid Pipelines | No | ✅ Yes | Optimization |
| Model Fallback | No | ✅ Yes | Reliability |
| Model Ensemble | No | ✅ Yes | Quality |
| AI Evaluation | Basic | ✅ G-Eval comprehensive | Quality assurance |
| Evaluation Criteria | Limited | ✅ Pre-built suites | Easy to use |
| Debugging | Limited | ✅ Comprehensive | Fast troubleshooting |
| Execution Trace | No | ✅ Full trace | Understanding |
| Prompt Inspection | No | ✅ Yes | Transparency |
| Performance Profiling | No | ✅ Yes | Optimization |
| Interactive Debugger | No | ✅ Yes | Development speed |
| Caching | No | ✅ Yes | Cost reduction |
| Cost Tracking | No | ✅ Yes | Budget management |
| Versioning | No | ✅ Yes | Reproducibility |
| Observability | Limited | ✅ Full support | Production ready |
| Philosophy | Automation | Explicit control | Rust alignment |
Implementation Roadmap¶
Phase 1: Foundation (Months 1-3)¶
Priority: Core + Multiple Models + Basic Debugging
- ✅ Core DSP framework (Layer 1)
- ✅ Multiple model support (OpenAI, Anthropic, local)
- ✅ Basic model configuration
- ✅ Execution inspector
- ✅ Basic trace visualization
Deliverable: Working core with model flexibility and basic debugging
Phase 2: Evaluation (Months 4-5)¶
Priority: AI-as-a-Judge Evaluation
- ✅ G-Eval judge implementation
- ✅ Common criteria (faithfulness, relevance, correctness, etc.)
- ✅ Pipeline evaluator
- ✅ Evaluation reports (JSON, markdown, HTML)
- ✅ Pre-built evaluation suites
Deliverable: Comprehensive evaluation framework
Phase 3: Advanced Debugging (Months 5-6)¶
Priority: Production Debugging Tools
- ✅ Prompt inspector
- ✅ Context visualizer
- ✅ Performance profiler
- ✅ HTML/JSON export
- ✅ Bottleneck identification
Deliverable: Full debugging toolkit
Phase 4: Production Features (Months 7-9)¶
Priority: Production Readiness
- ✅ Hybrid pipelines (different models per stage)
- ✅ Model fallback chain
- ✅ Caching system
- ✅ Cost tracking
- ✅ Pipeline versioning
- ✅ Interactive debugger
Deliverable: Production-ready system
Phase 5: Advanced Features (Months 10-12)¶
Priority: Enterprise Features
- ✅ Model ensemble
- ✅ Intelligent routing
- ✅ Observability (OpenTelemetry)
- ✅ Continuous evaluation
- ✅ A/B testing framework
- ✅ Advanced cost optimization
Deliverable: Enterprise-grade platform
Target Market Segments¶
Segment 1: Engineering Teams¶
Profile: Teams building production LLM applications
Needs: - Full control over behavior - Comprehensive debugging - Cost management - Quality assurance
AirsDSP Value: Explicit control + production tooling
Segment 2: Research Labs¶
Profile: Researchers experimenting with novel approaches
Needs: - Flexibility to try new approaches - Detailed introspection - Reproducibility - Performance analysis
AirsDSP Value: Explicit architecture + comprehensive debugging
Segment 3: Enterprise Organizations¶
Profile: Large organizations with compliance and budget constraints
Needs: - Cost tracking and optimization - Quality guarantees - Observability and monitoring - Vendor flexibility
AirsDSP Value: Multiple models + cost tracking + observability
Success Metrics¶
Adoption Metrics¶
- GitHub stars and forks
- Crate downloads
- Community contributions
- Production deployments
Quality Metrics¶
- Bug reports vs feature requests ratio
- Documentation completeness
- Test coverage
- Performance benchmarks
Differentiation Metrics¶
- Feature comparison with DSPy
- Unique capabilities utilization
- User satisfaction surveys
- Production success stories
Key Takeaways¶
For Product Strategy¶
- ✅ Clear Differentiation: AirsDSP focuses on explicit control and production tooling
- ✅ Multiple Models: True flexibility, not vendor lock-in
- ✅ AI-as-a-Judge: G-Eval methodology for comprehensive evaluation
- ✅ Comprehensive Debugging: Leverage DSP's explicit architecture
- ✅ Production Ready: Cost tracking, caching, observability
For Implementation¶
- ✅ Phased Approach: Core → Evaluation → Debugging → Production → Advanced
- ✅ High-Value Features First: Multiple models, AI-eval, debugging are priorities
- ✅ Layered Architecture: Features fit naturally into Layer 1-4 structure
- ✅ Rust Advantages: Leverage Rust's type system, performance, safety
- ✅ Community Focus: Open source, well-documented, example-rich
For Users¶
- ✅ Explicit Over Implicit: Full visibility and control
- ✅ Production Ready: Comprehensive tooling for real-world use
- ✅ Cost Effective: Multiple models, caching, cost tracking
- ✅ Quality Assured: Comprehensive evaluation and debugging
- ✅ Vendor Agnostic: Not locked into any specific provider
References¶
Related Knowledge Base Documents¶
- DSP Framework Core:
dsp_framework_core.md - DSP Pipeline Architecture:
dsp_pipeline_architecture_examples.md - DSP Reasoning Strategies:
dsp_reasoning_strategies_implementation.md - DSP Multi-Task System:
dsp_multi_task_system_architecture.md - DSP Layered Architecture:
dsp_layered_architecture_design.md
External References¶
- G-Eval Paper: "G-Eval: NLG Evaluation using GPT-4 with Better Human Alignment"
- DeepEval: https://github.com/confident-ai/deepeval
- DSPy: https://github.com/stanfordnlp/dspy
Document Status: Complete
Implementation Readiness: High - Clear product strategy and roadmap
Next Steps: Begin Phase 1 implementation with focus on core + multiple models + basic debugging