- Response Time: <100ms for typical file operations
- Large File Handling: Support files up to 1GB with streaming
- Concurrent Operations: Handle 10+ concurrent file operations
- Memory Usage: <50MB baseline memory footprint
Optimization Strategies
Memory Management
// Streaming for large files
const CHUNK_SIZE: usize = 1024 * 1024; // 1MB chunks
const MAX_MEMORY_LOAD: u64 = 10 * 1024 * 1024; // 10MB
async fn read_large_file_streamed(&self, path: &Path) -> Result<FileStream, FsError> {
let file = tokio::fs::File::open(path).await?;
let file_size = file.metadata().await?.len();
if file_size > MAX_MEMORY_LOAD {
Ok(FileStream::chunked(file, CHUNK_SIZE))
} else {
Ok(FileStream::direct(file))
}
}
Caching Strategy
pub struct FileCache {
metadata_cache: LruCache<PathBuf, FileMetadata>,
content_cache: LruCache<PathBuf, CachedContent>,
// Binary caching removed for security - text-only processing
}
impl FileCache {
async fn get_or_compute_metadata(&mut self, path: &Path) -> Result<FileMetadata, FsError> {
if let Some(cached) = self.metadata_cache.get(path) {
if !cached.is_stale() {
return Ok(cached.clone());
}
}
let metadata = self.compute_metadata(path).await?;
self.metadata_cache.put(path.to_path_buf(), metadata.clone());
Ok(metadata)
}
}
Scalability Considerations
- Async-First Design: All I/O operations are non-blocking
- Resource Limits: Configurable limits prevent resource exhaustion
- Connection Pooling: Efficient handling of multiple MCP clients
- Background Processing: Heavy operations run in background tasks